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Abstract-A semi-empirical model for condensation on horizontal, integral-fin tubes has been adapted to 
account for ‘fin efficiency effects’. Specimen calculations have been made to investigate the effect of tube 
geometry and material on the enhancement ratio for condensation of steam and CFCll. The best fin spacing 
was found to be only weakly dependent on the other geometric variables and fin thermal conductivity. The 
best fin thickness was more strongly dependent on fin thermal conductivity. For the refrigerant the optimum 
fin thickness was smaller than presently used in practice. The model gave satisfactory agreement with 
experimental data for CFC113 and steam for typical fin geometries. In the case of CFC113 the 
enhancement ratio was almost independent of fin thermal conductivity for conductivities exceeding 

around 50 W m-’ K-‘. 

INTRODUCTION For the fin flanks 

A SIMPLE, semi-empirical equation for condensation on 
horizontal, integral-fin tubes with fins of rectangular 
cross-section has been obtained [l] and extended [2] 
to trapezoidal cross-section fins. The mode1 combined 
the Nusselt [3] approach for gravity-drained con- 
densation on vertical plates and horizontal tubes with 
dimensional analysis to account for the effects of sur- 
face tension on the condensate flow. The resulting 
equation was in good agreement with experimental 
data for various fluids from 19 investigations for con- 
densation on copper tubes. Good predictions were 
obtained for optimum spacing between fins for given 
fin height, thickness and tube diameter. Since con- 
duction in the fin was neglected (the whole of the fin 
was assumed to be at the fin root temperature) the 
model would be expected to become less accurate and 
to overestimate the ‘enhancement ratio’ with increas- 
ing values of (cth’/tk,). The present paper describes 
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where A TRank is a mean temperature difference 
between the vapour and the fin flank, BAsnk is a dimen- 
sionless constant, and h, is the ‘mean vertical fin 
height’, given by 

where & is the angular position, measured from the 
top of the tube, below which the interfin space is 
completely filled with retained condensate. how ‘fin-efficiency effects’ can be 

the model in an approximate way. 
incorporated into 

ANALYSIS 

For rectangular-section fins, Rose [l, 21 gave 
expressions for the heat flux to the fin tip, fin flank 
and fin root. Dropping the assumption, made in the 
earlier work, of negligible temperature gradient in the 
fin, these equations can be rewritten as follows : 

For the fin tip 

qttp = $(kATL,p)3 [0.281 ($) +&, (;)-ji’-’ 

(1) 

where BtiP is a dimensionless constant. 

f&a,, ; 
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For the interfin space 

where B, and B,,, are dimensionless constants and 
((4) results from application of the Nusselt [3] analy- 
sis for a horizontal tube above the level of condensate 
retention, and can be closely approximated by 

t(4) = 0.874+0.1991 x lo-‘4-0.2642 x lo-‘@ 

+0.5530x 10~2~3-0.1363x lo-*C/P. (5) 

& is given, for rectangular-section fins, by the 
expression of Honda et al. [4] 
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NOMENCLATURE 

&“k dimensionless constant in equation (2) T, vapour temperature 
B !nt dimensionless constant in equation (4) t fin thickness 
B w dimensionless constant in equation (I) .Y coordinate radially outward along tin 

B, dimensionless constant in equation (4) flank, with x = 0 at fin root. 
d diameter of plain tube or fin root 

diameter of finned tube Greek symbols 

.;I: 

diameter at fin tip z vapour-side, heat-transfer coefficient, 
fraction of fin flank above C& blanked by q/AT 
retained condensate %Ull mean heat-transfer coefficient for 

.L fraction of interfin tube surface blanked unflooded part of fin flank 
by retained condensate &,p heat-transfer coefficient for fin tip over 

Y specific force of gravity unflooded part of tube 
h fin height AT vapour-side temperature difference 
h fi! specific enthalpy of evaporation ATflank local vapour-side temperature 

h, mean vertical fin height, see equations (3) difference on fin flank 
k thermal conductivity of condensate ATflank average vapour-side temperature 

k, thermal conductivity of fin difference on fin flank, defined by 
In J(2a,,,,lU equation (IO) 

Qfin heat-transfer rate to fin AT,, vapour-side temperature difference in 

Q R”Od heat-transfer rate to ‘flooded’ part of interfin space 

tube AT,,p vapour-side temperature difference at fin 

Q,“, heat-transfer rate to interfin space in tip 

‘unflooded’ part of tube A Tt,p.~ood vapour-side temperature 
Qplaln heat-transfer rate to plain tube over difference at fin tip in flooded region 

length equal to one fin pitch of finned CA7 enhancement ratio (heat-transfer 

tube coefficient for finned tube divided by 

4 heat flux heat-transfer coefficient for plain tube, 

qRank heat flux to fin flank in ‘unflooded’ part both based on plain tube area at fin 

of tube root diameter and for same vapour-side 

41”l heat flux to interfin space in ‘unflooded’ temperature difference) 

part of tube P viscosity of condensate 

qplaln heat flux to plain tube ((4) function given by equation (5) 

41Ir, heat flux to fin tip P density of condensate 

q,,p,Rood heat flux to fin tip in ‘flooded’ part PV density of vapour 

of tube P P-P” 
s spacing between rectangular-section fins 

; 

surface tension 

I;,, tube surface temperature in interfin space angle measured from top of tube 

T root fin-root temperature (equal to T,,) 6 retention angle, measured from top of 

T ,,p,flood fin-tip temperature in flooded tube to the position at which interfin 

region space becomes full of condensate. 

(6) 
that of a plain tube having diameter d, and for the 

same vapour-side temperature difference) 

When the surface temperature of the fin is taken to 
1:4 

be constant and equal to the temperature of the tube at sAr = 
the fin root (as in refs. [ 1,2] and valid when (cth’/tk,) is 
small) we have 

AT,,, = ATflank = AT,,1 = AT. (7) 

With this assumption, equations (1) (2) and (4) can 
+B, (1 -.L)s (5(M)‘+ 

Brootod “’ 
be combined, along with the relevant surface areas * ~ 1 Ii 0.728(s+ t) 

and the Nusselt [3] equation for condensation on a 
(8) 

plain tube, to produce the following equation for the 
enhancement ratio of a tinned tube (defined as the where ,ji and ,f; are the proportions of fin flank and 
heat-transfer coefficient of the finned tube, based on interfin space, respectively, above the flooding angle 
a plain-tube area of fin root diameter, d, divided by &-, covered by retained wedges of condensate in the 



fin root corners. As shown in ref. [5], fr and fs can be 

approximated by 

fr = (2al&h)(tan (&/2)/M 

fs = (4alp&)(tan (&/2)/M. 

(9a) 

(9b) 

Note that equation (8) involves only geometric par- 
ameters and the property ratio a/;. 

Rose [1, 21 found that, with BtlP = Bnank = 
Bi,, = 0.143 and B, = 2.96, equation (8) represented 
most of the available experimental data for con- 

densation on copper tubes to better than 20% and 
gave the correct dependence on fin spacing, thickness 

and height. 
When the parameter (c&/t/~,) becomes large, con- 

duction in the fin can no longer be neglected. In view 
of the approximations used in the original model [1, 

21 it was deemed adequate to include the effect of 
temperature variation along the fin in an approximate 
and readily usable way. This was done by dividing the 

tube into flooded and untlooded parts. In the flooded 
part the fin flanks were assumed adiabatic, giving a 
linear temperature variation along the fin, while in the 
unflooded part an average value of the flank tem- 
peraturem, and hence of the vapour-to-flank tem- - 
perature difference ATRank, in equation (2) with 

ATflank given by 

ATni,nk = :, 
s 

h 
AT(x) dx. (10) 

0 

Then 

ATIp < ATflank < AT,, (11) 

and for given values of TV and T,nt (= T,,,,) we have 
a sufficient number of equations to determine qtip, 
qAankt ATtIP and A%nk for the unflooded part of the 

tube. 
In the flooded part of the tube, equation (1) gives 

the heat flux at the fin tip as a function of fin geometry, 
fluid properties and the fin tip temperature difference, 

ATt,p.~ood. Assuming that, in the flooded region, the 
fin flanks are adiabatic (k < k,) and neglecting change 
in cross-section with height (low fins) gives 

%p.flood = 

k(Ttw.nood - Trod 
h 

(12) 

where Ttlp.Rood = TV - A Tt,p,~ood. 
Writing AT,ip,Rood for ATtlP in equation (1) and 

equating the right-hand sides of equations (1) and 
(12) results in an equation for ATtip,Rood which can be 
solved for given values of TV and T,,,,, and hence 

q,lp,Hood can be found from either equation (1) or (12). 
The total heat-transfer rate to the flooded region for 
one fin pitch can then be found from, 

Q llood = (x - ~f)dOt4tip.lloocl~ (13) 

In the unflooded region we again have expressions 
for the heat flux to the fin tip, flank and root as 
functions of geometry, fluid properties and the fin 

tip, flank or root temperature differences, respectively 
(equations (1) (2) and (4)). For the interfin space, 

AT,,, (= TV - Ti”,) is known for given values of TV and 
T root> and qin, can be calculated directly using equation 

(4). The heat-transfer rate to one interfln space is 
given by 

Q#.t = Ml -L)&&nt. (14) 

For the fin, the problem is complicated by the fact 

that the temperature at the fin flank, and hence ATRank, 
varies with distance from the fin root. As mentioned 

above we here adopt a mean value, defined by equa- 
tion (lo), for the vapour-to-flank temperature differ- 
ence ATRank in equation (2). 

Thus 

qilank 
tl 

nank 

-_ 

- mTnank 

= {$& [,.,,I ($) +t&,,, ($]jli4. 

(15) 

From equation (l), at+, is given by 

Y 
CY 

IlP -~ 

“’ - ATt,P 

= {$$[0.2*1($) +Btip (;)-J~“. 

(16) 

For low fins we neglect changes in cross-section ; 
the ‘slender-fin’ approximation for the conduction 
problem then gives, for the local vapour-to-surface 
temperature difference along the fin 

AT(x) _ cash [m(h -x)] + (a,,,/mk,) sinh [m(h - x)] 

AT cash (mh) + (cctip/mk,) sinh (mh) 

where 

(17) 

(18) 

From equation (17) 

ATtlP = AT(h) = 
AT 

cash (mh) + (ccti,/mk,) sinh (mh) 

and 

(19) 

AT 
mnank = mh 

sinh (mh) + (atip/mk,) {cash (mh) - 1) 

cash (mh) + (a,,,/mk,) sinh (mh) 1 ’ 
(20) 

Substitution for aRank from equation (15) and atip 
from equation (16) into equations (19) and (20) leaves 
two equations with two unknowns, i.e. ATfl.,,k and 
ATtip, which may be solved by iteration for given 
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values of TV and T,,,,. q,,, and qRank can then be found 
from equations (I) and (2) respectively. 

The total heat-transfer rate to one fin in the 
unflooded region is then given by 

For a plain tube with fin root diameter, the Nusselt 

[3] theory gives 

So that the heat-transfer rate over a length equal to 
one fin pitch is 

Pplaln = r@J + r)4rlain. (23) 

The enhancement ratio, a,,r, is then given by 

(24) 

where QRoodr Q,“,, Qtin and Qplaln are obtained from 
equations (13), (14), (21) and (23), respectively. 

RESULTS 

Calculations have been made for steam and CFC I I 
using typical fin and tube dimensions and for thermal 
conductivities ranging from 80 W mm ’ Km ’ (bronze) 
to400Wm ’ K ’ (copper). It was verified that when 
using a very large value of fin thermal conductivity, 
the procedure outlined above led to the same results 
as in refs. [ 1, 21 where temperature drop along the fin 
was neglected. In the unmodified theory the enhance- 
ment ratio was independent of vapour-side tem- 
perature difference. The extent to which the present 
modification leads to a dependence on vapour-side 

temperature difference was investigated and found to 

be very small. For steam at 100-C and CFCI 1 at 
60°C. the enhancement ratio was virtually inde- 

pendent of vapour-side temperature difference for all 
thermal conductivities and geometries used, falling 
off slightly at low values of vapour-side temperature 
difference (around 5 K for steam and 1 K for CFCI 1). 

The effect of fin spacing was studied for steam and 
CFCI 1 and for fin thermal conductivities in the range 

80400 W mm ’ Km ‘. The optimum spacing (that giv- 
ing highest vapour-side enhancement ratio) was found 
to be almost independent of tube thermal conduc- 
tivity. fin height and lin thickness, and not strongly 
dependent on fin-root diameter in the range IO-30 
mm. For CFCI 1 the optimum fin spacing was between 
0.25 and 0.35 mm, with larger diameter tubes having 
larger optimum fin spacing. For steam, the optimum 
fin spacing was between I and 1.5 mm, the peak being 

much less sharp than in the case of the refrigerant so 
that in practice the choice of fin spacing would be less 
critical in the case of steam. These general conclusions 
are the same as those given by the unmodified theory 
[I, 21; the effect of thermal conductivity therefore has 

little effect on the optimum spacing between fins. 
Effect of fin height was studied using various fin 

thicknesses in the practical range, with near-optimum 
values of fin spacing for steam (1.25 mm) and CFCI 1 
(0.3 mm). The results, for a fin root diameter of 12.7 
mm, are shown in Fig. I. It is seen that the increase 
in enhancement ratio with fin height is almost linear 
in all cases. For CFCI I the effect of fin thermal con- 

ductivity is relatively weak and the enhancement ratio 
continues to increase significantly with fin height in 
the practical range. For steam, with much higher heat- 
transfer coefficients on the fin surfaces, the effect of 
fin thermal conductivity is stronger as expected. For 
the lower thermal conductivity materials, there is cvi- 
dcntly no advantage in increasing the fin height. 

Figure 2 shows the calculated variation of enhance- 
ment ratio with fin thickness for the same fluids and fin 
thermal conductivities with near-optimum fin spacing 
and for a fin height of 1 mm. For both fluids it may 
be seen that the optimum fin thickness increases as 
the fin thermal conductivity decreases. For CFCII 

12 
3 ll- -._._ 

kw=m 
Copper kw=4C!OW/mK 

lo- Brass 
T.T . . : 
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FIG. 1. Variation of predicted vapour-side enhancement ratio with fin height. 
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h=lmm 

CFCI 1 
s = 0.3 mm 

FIG. 2. Variation of predicted vapour-side enhancement ratio with fin thickness. 

5 -- ?I -----------l---___ 

w 

1. 350 400 

FIG. 3. Variation of vapour-side enhancement ratio with fin thermal conductivity; comparison with 
experimental data [6] for steam (T, = 100°C. AT = 20 K, d = 12.7 mm, t = 0.5 mm, s = 1 mm ----- 

11,217 k, = ~0, - present model, +[6]). 



462 A. BRIGGS and J. W. ROSE 

s 

I” .------------_---__ +/ 
1 / 

h=lmm 
O~,,,~,,,,,,,,,,,~~,,,,,,,,,,,,,,,,~,~,,,,, 
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FIG. 4. Variation of vapour-side enhancement ratio with fin thermal conductivity; comparison with 
experimental data [7] for steam (T, = IOOT, AT = 30 K, d = 13.9 mm. t = 1 mm. .F = I .5 mm 

[1,2],k, = cc- present model, + 171). 

the peaks in enhancement ratio are at fin thicknesses steam except that the curves are much flatter with 
of 0.05, 0.07 and 0.09 mm for copper, brass and peaks at fin thicknesses of 0.4, 0.7 and 0.8 mm for 
bronze, respectively. For larger fin thickness, the copper, brass and bronze, respectively. 
enhancement ratio drops off quite steeply and the It is evident from Figs. 1 and 2 that for steam there 
effect of fin thermal conductivity on enhancement is little or no advantage in using finned tubes for the 
ratio diminishes. Similar results are obtained for lower conductivity materials 

lj h=0.5mm 

FIG. 5. Variation of vapour-side enhancement ratio with fin thermal conductivity; comparison with 
experimental data [6] for CFCl13 (T, = 48”C, AT = 25 K, d = 12.7 mm, t = 0.5 mm, s = I mm 

[I, 21, k, = a, ~ present model, + [6]). 
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COMPARISON WITH EXPERIMENTAL DATA CONCLUSIONS 

Huang et al. [6] have recently done tests with 

CFCl13 and steam condensing on copper, brass and 

bronze finned tubes. Four tubes of each material were 
tested, with constant fin root diameter, fin thickness 
and fin spacing of 12.7, 0.5 and 1 .O mm, respectively, 
and fin heights of 0.5,0.9, 1.3 and 1.6 mm. The thermal 
conductivity of the three materials, calculated from 
the measured electrical conductivity, were found to be 
around 80, 120 and 330 W m-’ K- ’ for bronze, 

brass and copper tubes, respectively, over the range of 
temperatures of interest. Data on the effect of thermal 
conductivity have also been obtained recently by 
Cobb [7], who condensed steam on tubes of stainless 
steel, aluminium, copper-nickel alloy and copper 
(quoted thermal conductivities of 15. 30, 75 and 400 
W m- ’ K ‘, respectively) with constant fin root 
diameter of 13.7 mm, and constant film thickness, 
spacing and height of 1.0, 1.5 and 1.0 mm, respec- 
tively. 

The model of Rose [ 1,2] for condensation on hori- 

zontal, integral-fin tubes has been adapted to account 

for ‘fin efficiency’ effects. The modified model should, 
in principle, be able to predict optimum fin thickness, 
spacing and height for a given fluid and tube diameter. 
In practice, the optimum fin height was outside the 
range of the low fin approximation used in the model. 

The best fin spacing was essentially independent of 
other geometric variables and fin thermal conduc- 
tivity. The best fin thickness was strongly dependent 
on fin thermal conductivity and fluid. For the refriger- 
ant the optimum fin thickness is smaller than 
presently used in practice. 
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